
Lab 7: Controls

EECS 16B Spring 2024

Slides: http://links.eecs16b.org/lab7-slides

Lab 7 Overview

- Make your car drive straight!
 - Open-Loop Control
 - Open loop simulation with/without model mismatch
 - Jolt value calculations
 - Closed-Loop Control
 - Simulation + feedback gain f-value tuning
 - Steady-state error correction
- Turning
 - Derive equation
 - Implement turning in Arduino code

System ID → Open Loop Control

$$v_{L}[i] = d_{L}[i+1] - d_{L}[i] = \theta_{L}u_{L}[i] - \beta_{L}$$

 $v_{R}[i] = d_{R}[i+1] - d_{R}[i] = \theta_{R}u_{R}[i] - \beta_{R}$

- Last week, we:
 - o knew **u**, measured **v**
 - \circ calculated θ_{LR} and β_{LR} from least squares
 - Determined operating velocity point v*
- Opposite problem: given some target v, what input u do we need?
 - Open Loop Control: solve the above equations for u

$$u_L^{OL} = rac{v^* + eta_L}{ heta_L} \qquad u_R^{OL} = rac{v^* + eta_R}{ heta_R}$$

Problems with Open Loop

$$u_L^{OL} = rac{v^* + eta_L}{ heta_L} \qquad u_R^{OL} = rac{v^* + eta_R}{ heta_R}$$

Does open loop work well for systems with disturbances? Why or why not?

Problems with Open Loop

$$u_L^{OL} = rac{v^* + eta_L}{ heta_L} \qquad u_R^{OL} = rac{v^* + eta_R}{ heta_R}$$

- Will not correct for disturbance/noise (marginally stable)
- Assumes θ , β are the actual θ , β of the wheels
 - Any error will build up, preventing the car from going straight

Closed Loop Intuition

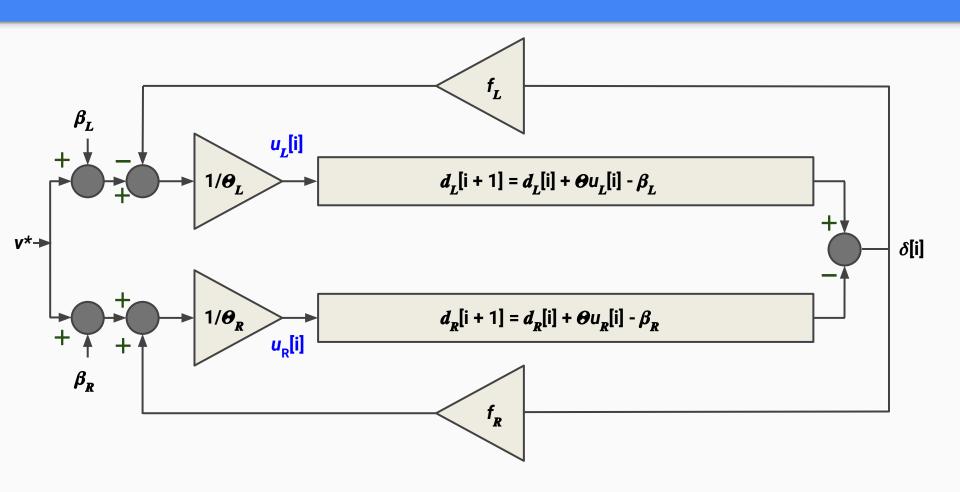
- Introduce an error term that indicates the car's trajectory
 - Negative feedback allows us to correct for disturbance
- Goal: drive this delta to a zero/constant value!

Closed Loop Equations

Introduce an error term:

$$\delta[i] = d_{I}[i] - d_{R}[i]$$

The wheel/motor models become


$$d_{L}[i+1] = d_{L}[i] + \Theta_{L}u_{L}[i] - \beta_{L} - f_{L}\delta[i]$$

$$d_{R}[i+1] = d_{R}[i] + \Theta_{R}u_{R}[i] - \beta_{R} + f_{R}\delta[i]$$

Note: Convention is that f > 0

$$u_L[i] = u_L^{OL} - rac{f_L}{ heta_L} \delta[i] \qquad u_R[i] = u_R^{OL} + rac{f_R}{ heta_R} \delta[i] \ v_{u_L^{OL} = rac{v^* + eta_L}{ heta_L}}$$

Closed Loop Visualization for finding u

Review: Closed-Loop Control

Open-Loop Equations

$$rac{u_L^{OL}}{ heta_L} = rac{v^* + eta_L}{ heta_L}$$

$$rac{u_R^{OL}}{ heta_R} = rac{v^* + eta_R}{ heta_R}$$

Closed-Loop Equations

$$u_L[i] = \frac{u_L^{OL}}{\theta_L} - \frac{f_L}{\theta_L} \delta[i]$$

$$u_R[i] = \frac{u_R^{OL}}{\theta_R} + \frac{f_R}{\theta_R} \delta[i]$$

$$\delta[i] = d_L[i] - d_R[i]$$

Closed Loop Analysis

- What's the error after one step?
 - \circ $\delta[i+1] = d_1[i+1] d_2[i+1]$

 - $\delta[i+1] = \delta[i] (1 f_1 f_R)$
 - This is of the discrete system form $\delta[i+1] = \lambda \delta[i]$, so $\lambda = (1 fL fR)$
- Stability Analysis:
 - \circ $|\lambda|$ < 1: system is stable (error decreases over time)
 - \circ $|\lambda| > 1$: system is unstable (error increases over time)
 - \circ λ < 0: system is oscillatory (overcorrection, f-values are too large)

Exploiting Delta for Turning

- What happens during turning?
 - One wheel moves more than the other
 - \circ + delta \rightarrow dL > dR \rightarrow turn right
 - \circ delta \rightarrow dL < dR \rightarrow turn left
- Idea: Add artificial offset value to δ[i]
 - Car "thinks" its turning
 - \circ "corrects" it by driving $\delta \to 0$
 - Naive implementation: add a constant offset?

Closed-Loop Equations

$$u_L[i] = \frac{u_L^{OL}}{\theta_L} - \frac{f_L}{\theta_L} \delta[i]$$

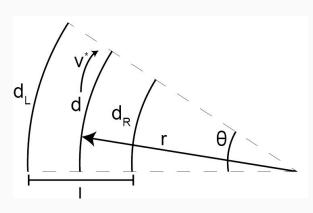
$$u_R[i] = \frac{u_R^{OL}}{u_R} + \frac{f_R}{\theta_R} \delta[i]$$

$$\delta[i] = d_L[i] - d_R[i]$$

Exploiting Delta for Turning

- Naive implementation: add a constant offset?
 - Car tries to turn very suddenly
 - Large offset -> wheels leave controllable range
 - Isn't really "aesthetic"
 - car will turn once and then drive straight rather than sweeping an angle

Closed-Loop Equations


$$u_L[i] = \frac{u_L^{OL}}{u_L} - \frac{f_L}{\theta_L} \delta[i]$$

$$u_R[i] = \frac{u_R^{OL}}{u_R} + \frac{f_R}{\theta_R} \delta[i]$$

$$\delta[i] = d_L[i] - d_R[i]$$

Exploiting Delta for Turning

- Goal: gradual, circular turn
 - delta is a distance function!
 - Idea: add offset as a variable dependent on time
- In the case of a circular turn, what should $\delta[i]$ be at time i?
 - Function of r (turn radius), I (car width), v*, and time i
 - Use arc length formula!
 - Relate distance to velocity and time
 - Check your derivation with staff

Implementing turning.ino

- Code the function for $\delta[i]$ you found
 - Control loop and the data collection have different periods
 - Account for different sampling rates of data collection and controller
- (Optionally) apply a straight correction for any lingering turning due to mechanical errors

Mic Board Verification

- As a final step, verify that your biasing circuits and front-end circuitry still work as expected.
 - we will be using the mic board next week for the SVD/PCA lab!
- You will run a quick Arduino + Python program to see if the Arduino is successfully reading data from the mic board
 - You should see the Python script create a graph that displays the waveform
 - The window may appear frozen. If that happens, try dragging it around and it should work

Lab 7 Checkoff

- Our definition of "straight" is based on the floor tiling in Cory:
 - o Inside Cory 125 (1x4 tiles)
 - Outside Cory 125 (3 x 11 on black)
 - Side entrance hallway, from the pink line to the red line (2 x 7 tiles)

Common Bugs

- Double check all equations!
 - For both closed loop and turning, one term is positive and on term is negative
- If a wheel jolts and stops moving:
 - 1. Double check that all pins (motor and encoder) you are using are correctly defined in the Arduino code
 - 2. Rerun encoder tests from System ID to make sure encoders are still working
- If motors are no longer running, rerun the encoder tests
 - If you suspect your Arduino pin is broken, try another pin
 - DO NOT USE PIN 9

Tips and Common Errors

- Don't guess f-values, this will take you forever!
 - Make educated decisions on how to change your f values from iterations of testing.
 - \circ If you car is turning left, how should you change f_I and f_R to fix it?
- Data is stored in RAM, just like last lab, so make sure you keep the 9V plugged in when you plug the USB into your computer
- You can manipulate the turn radius and run times (in ms!) of the turning sequence
- Ensure you've replaced v* with v* / m ONLY in delta_reference function
- Do not cut the power supply cable and cause a firework. please.

Important Forms/Links

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Slides: http://links.eecs16b.org/lab7-slides
- Anon Feedback: https://eecs16b.org/lab-anon-feedback
- Lab Grades error: https://links.eecs16b.org/lab-checkoff-error