
Lab 7:
Controls

Slides: http://links.eecs16b.org/lab7-slides

EECS 16B Spring 2024

http://links.eecs16b.org/lab7-slides

Lab 7 Overview

● Make your car drive straight!
○ Open-Loop Control

■ Open loop simulation with/without model mismatch
■ Jolt value calculations

○ Closed-Loop Control
■ Simulation + feedback gain f-value tuning
■ Steady-state error correction

● Turning
○ Derive equation
○ Implement turning in Arduino code

System ID → Open Loop Control

vL[i] = dL[i+1] - dL[i] = θLuL[i] - βL
vR[i] = dR[i+1] - dR[i] = θRuR[i] - βR

● Last week, we:
○ knew u, measured v
○ calculated θL,R and βL,R from least squares
○ Determined operating velocity point v*

● Opposite problem: given some target v, what input u do we need?
○ Open Loop Control: solve the above equations for u

Problems with Open Loop

Does open loop work well for systems with disturbances? Why or why not?

Problems with Open Loop

● Will not correct for disturbance/noise (marginally stable)
● Assumes θ, β are the actual θ, β of the wheels

○ Any error will build up, preventing the car from going straight

Closed Loop Intuition

● Introduce an error term that indicates the car’s trajectory
○ Negative feedback allows us to correct for disturbance

● Goal: drive this delta to a zero/constant value!

Closed Loop Equations

● Introduce an error term:
δ[i] = dL[i] – dR[i]

● The wheel/motor models become
dL[i+1] = dL[i] + 𝛳LuL[i] - βL - fLδ[i]
dR[i+1] = dR[i] + 𝛳RuR[i] - βR + fRδ[i]

Note: Convention is that f > 0

Closed Loop Visualization for finding u

v*

𝜷𝑳

𝜷𝑹

𝛿[i]

f𝑳

f𝑹

1/𝜣𝑳

1/𝜣𝑹

𝒅𝑳[i + 1] = 𝒅𝑳[i] + 𝜣u𝑳[i] - 𝜷𝑳

𝒅𝑹[i + 1] = 𝒅𝑹[i] + 𝜣u𝑹[i] - 𝜷𝑹

u𝑳[i]

uR[i]

Review: Closed-Loop Control

Open-Loop Equations Closed-Loop Equations

Closed Loop Analysis

● What’s the error after one step?
○ δ[i+1] = dL[i+1] – dR[i+1]
○ δ[i+1] = v* - fLδ[i] + dL[i] - (v* + fRδ[i] + dR[i])
○ δ[i+1] = δ[i] (1 - fL - fR)

■ This is of the discrete system form δ[i+1] = 𝜆 δ[i], so 𝜆 = (1 - fL - fR)

● Stability Analysis:
○ |𝜆| < 1: system is stable (error decreases over time)
○ |𝜆| > 1: system is unstable (error increases over time)
○ 𝜆 < 0: system is oscillatory (overcorrection, f-values are too large)

Plug in for d[i+1]: v[i] = d[i + 1] - d[i]

Simplify

Exploiting Delta for Turning

● What happens during turning?
○ One wheel moves more than the other
○ + delta → dL > dR → turn right
○ - delta → dL < dR → turn left

● Idea: Add artificial offset value to δ[i]
○ Car “thinks” its turning

○ “corrects” it by driving δ → 0
○ Naive implementation: add a constant offset?

Closed-Loop Equations

Exploiting Delta for Turning

● Naive implementation: add a constant offset?
○ Car tries to turn very suddenly
○ Large offset -> wheels leave controllable range
○ Isn’t really “aesthetic”

■ car will turn once and then drive straight rather
than sweeping an angle

Closed-Loop Equations

Exploiting Delta for Turning

● Goal: gradual, circular turn
○ delta is a distance function!
○ Idea: add offset as a variable dependent on time

● In the case of a circular turn, what should δ[i] be at time i?
○ Function of r (turn radius), l (car width), v*, and time i
○ Use arc length formula!
○ Relate distance to velocity and time
○ Check your derivation with staff

Implementing turning.ino

● Code the function for δ[i] you found
○ Control loop and the data collection have different periods
○ Account for different sampling rates of data collection and controller

● (Optionally) apply a straight correction for any lingering turning due to
mechanical errors

Mic Board Verification

● As a final step, verify that your biasing circuits and front-end circuitry still
work as expected.
○ we will be using the mic board next week for the SVD/PCA lab!

● You will run a quick Arduino + Python program to see if the Arduino is
successfully reading data from the mic board
○ You should see the Python script create a graph that displays the waveform
○ The window may appear frozen. If that happens, try dragging it around and it should work

Lab 7 Checkoff

● Our definition of “straight” is based on the floor tiling in Cory:
○ Inside Cory 125 (1x4 tiles)
○ Outside Cory 125 (3 x 11 on black)
○ Side entrance hallway, from the pink line to the red line (2 x 7 tiles)

● Double check all equations!
○ For both closed loop and turning, one term is positive and on term is negative

● If a wheel jolts and stops moving:
1. Double check that all pins (motor and encoder) you are using are

correctly defined in the Arduino code
2. Rerun encoder tests from System ID to make sure encoders are

still working
● If motors are no longer running, rerun the encoder tests

○ If you suspect your Arduino pin is broken, try another pin
○ DO NOT USE PIN 9

Common Bugs

Tips and Common Errors

● Don’t guess f-values, this will take you forever!
○ Make educated decisions on how to change your f values from iterations of testing.
○ If you car is turning left, how should you change fL and fR to fix it?

● Data is stored in RAM, just like last lab, so make sure you keep the 9V
plugged in when you plug the USB into your computer

● You can manipulate the turn radius and run times (in ms!) of the turning
sequence

● Ensure you’ve replaced v* with v* / m ONLY in delta_reference function
● Do not cut the power supply cable and cause a firework. please.

Important Forms/Links

● Help request form: https://eecs16b.org/lab-help
● Checkoff request form: https://eecs16b.org/lab-checkoff
● Slides: http://links.eecs16b.org/lab7-slides
● Anon Feedback: https://eecs16b.org/lab-anon-feedback
● Lab Grades error: https://links.eecs16b.org/lab-checkoff-error

https://eecs16b.org/lab-help
https://eecs16b.org/lab-checkoff
http://links.eecs16b.org/lab7-slides
https://eecs16b.org/lab-anon-feedback
https://links.eecs16b.org/lab-checkoff-error

