Lab 1: Intro to S1XT33N

EECS 16B Spring 2024

We'll start on Berkeley Time!

Slides: <u>https://links.eecs16b.org/lab1-slides</u>

TA & ASE Introductions

Administrativa

- Make sure you have created an instructional web account to log in to lab computers (Visit <u>links.eecs16b.org/webacct</u> to create your account)
- Ensure that your gradescope account email matches your official main Berkeley email (you may not receive lab grades otherwise)

Lab Overview and Goals

Lab Overview

- Lab equipment training
- Build inverting amplifier on your physical breadboard

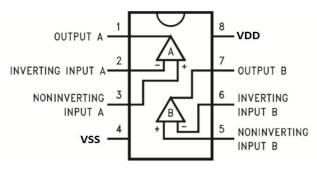
Lab Goals

- Gain experience in debugging circuitry
- Practice breadboarding on a physical breadboard
- Learn how to use lab equipment!!!

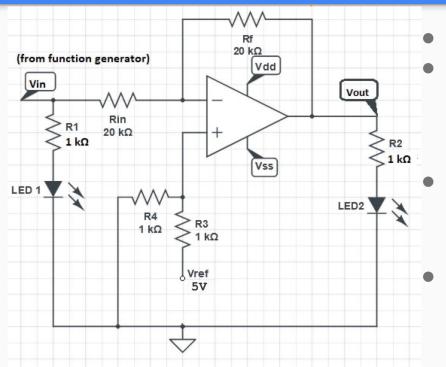
Breadboarding 101

± -	A B C D E	FGHIJ	+ -
	N D D D D D D	<u>00000</u>	1 2 9
	ω <u>σ_σ_σ_σ</u> _σ	0 0 0 0 0 W	10
00	+ 0-0-0-0-0	0-0-0-0-0	10
άά	v <u> </u>	000000	10
00	• • • • • • • •	0 0 0 0 0 0	10
	~ 0-0-0-0	00001	
o o	∞ <u>0-0-0-0</u>	0-0-0-0∞	10
	φ <u>0-0-0-0</u>	000000	10
¢ ¢	a	600000	1 0
	± 0-0-0-0	0-0-0-0-0	10
00	N 0 0 0 0 0	00000	10
	a	<u> </u>	
	4000	a o o o o	10
00	5 0 0 0 0	<u> </u>	10
00	<u>a</u>		10
	30-0-0-0	000003	19
00	a	<u>60000</u>	10
	5 0-0-0-0-0	0 0 0 0 0 0	
	8 0-0-0-0-0	0 0 0 0 0 N	11
9 9	200000	200002	22
	80000	0-0-0-0 N	1 1
	20-0-0-0	0 <u>0 0 0 0</u> 8	
U U	200000	20 <u>0</u> 00	14
	800000		
99	80000	<u> </u>	11
	20-0-0-0	0 0 0 0 0 3	
	28 0 0 0 0 0		
	80-0-0-0-0	00000	11
	80-0-0-0	<u> </u>	+ -
T	ABCDE	FGHIJ	T

Notch Rails Numbered rows are connected


- Not connected over the notch!
- Rails connected vertically, but not to each other
 - The 2 red rails are NOT connected
- IC chips like op amps need to straddle the notch
 - Otherwise you'll short the pins together
- Rails are reserved for power traces.
 - \circ + for DC voltage like 3.3V, for gnd
- Color code wires for easier debugging
 - Red for power, black for gnd
- Keep things planar (flat)! Avoid excessively long wires

Lab Kit Op-Amps



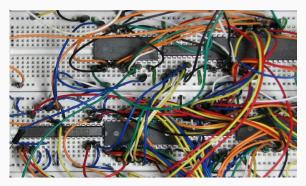
- 2 op-amps on one chip
- Must straddle the notch!
- Op-amp must be powered to provide at output

Today's Circuit

Inverting amplifier, but with an offset No current into inputs of op amp, so

$$i_{in} = (V_{in} - V)/R_{in} = (V - V_{out})/R_{f}$$

$$V^{-} = V^{+}$$
, and solving for V_{out} we get:


$$V_{out} = -(R_f/R_{in})V_{in} + (1+R_f/R_{in})V^+$$

Plug in resistance values:

$$V_{out} = -V_{in} + 2(V_{ref}/2) = -V_{in} + 5V$$

Debugging 101

- Bugs happen (VERY often) need skills to identify and fix them
 - Debugging circuits is like debugging a software program
 - Use tools like an oscilloscope to debug instead of a debugger
- Test often!
 - Take advantage of modularity and test individual parts of your circuit and test as you go
 - Make sure you see what you expect
- The oscilloscope is your friend.
 - Use it to gather clues as to what's going wrong
- Build cleanly staff will not debug spaghetti
- Plan where components will go ahead of time
 - Tinkercad is a great tool to use for this

Common Bugs

- Grounds (breadboard ground, equipment grounds) need to all be connected/shorted
- LEDs have orientation
 - Anode (+): longer leg
 - Cathode (-): shorter leg
- Need to power op-amp with Vdd and Vss

Reminders

- Collaboration is extremely important. Collaborate not just with your lab partner, but with everyone around you.
- Don't be afraid to ask questions if something doesn't make sense! Submit to help queue as often as you like.
- We are here to support you.

Lab Checkoff

- 1. **Open the lab** (can use Datahub link or download ipynb files)
- 2. Read Lab 1 Note and 16B Debugging Guide in the ipynb
- **3.** Watch Lab Equipment videos in the ipynb
- 4. Build a inverting amplifier with LEDs

Requirements for checkoff:

- a) Show behavior of LEDs
- b) Show input and output signals on oscilloscope
- c) Have ALL Qs answered in ipynb and be prepared to answer checkoff Qs

Make sure you're marked as checked off before you leave!

Important Forms/Links

- Help request form: <u>https://eecs16b.org/lab-help</u>
- Checkoff request form: <u>https://eecs16b.org/lab-checkoff</u>
- Extension Requests: <u>https://eecs16b.org/extensions</u>
- Slides: <u>https://links.eecs16b.org/lab1-slides</u>

Equipment Training

You will watch videos for equipment training these during section, but please refer to these slides and the resources in the Jupyter notebook as a supplement to the demos.

Power Supply

- Use to generate DC voltages for our circuits.
- +6V, +25V, -25V channels
- Voltage limit: set to maximum output voltage needed
- Current limit: set to 100mA = 0.1A
- For this lab: use +6V channel
- The video might have a brief moment where it shows the usage of the -25V channel or plugging into earth ground. Neither of those will be needed for lab this semester!

Multimeter

- Use to measure voltage, current, resistance
- Continuity test: plays a sound if there is electrical connection
 - Can use to check if power and ground are shorted

Function Generator

- Use to generate waveforms (square wave, sinusoids, etc.)
- Use Black cable, NOT the Gray cable
- Channel Setup -> Output Load: Always use High Z
- Waveforms
 - Chose type: square wave, sine wave, etc.
- Parameters
 - Adjust frequency, period, amplitude, phase, offset, duty cycle, etc.
- For this lab: generate a sine wave

Oscilloscope

- Use to view waveforms (square wave, sinusoids, etc.)
- Use Gray cable, NOT the Black cable
- Probe test: Follow instructions in equipment guide to view square wave
- Use knobs to adjust horizontal, time division; vertical, voltage division; vertical shift
- Trigger
 - Use to view static signal
- Cursors/Meas
 - Use to take measurements
- For this lab: view sine wave at input and output of inverting amplifier